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Outline 

 Grazing Incidence Small Angle X-ray Scattering (GISAXS) beamline and setup 

 Key knowledge to interpret GISAXS 

– Fourier Transform  

– Shape, size, and orientation of particles and lattices 

 The effect of a small incident angle 

– Reflection 

• Experimental examples: Crystalline nano particles. 

– Penetration depth 

• Experimental examples: Block copolymer films 

– Refraction 

 Grazing Incidence Small Angle X-ray Diffraction 

– Ewald sphere 

• Experimental examples: Block copolymer films 

 Quantitative calculation 

– Distorted wave Born approximation 

– Snell’s law and Fresnel’s law 
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12ID-B beamline at APS 
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Why GISAXS? 
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Advantage for the grazing incidence geometry for thin film. 

1. Several orders larger scattering volume 

2. Scatterings from oriented samples 

GISAS SAS 



Scattering and Fourier Transform 
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Electron density |FT(Electron density)|2 
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The Bragg equation: q = 2π/D 
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1. The Bragg equation: q = 2π/D 

2. Orientation 
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Polydispersity 
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1. Scattering from a flat surface 

2. Particle shape 
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Octahedron 
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When the structure factor is applied 
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2D cylinders 
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10nm 20nm 50nm 100nm 500nm Height 



lattices 
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Note 

 So far, the intensities have been calculated 
NUMERICALLY 

– 𝐼 𝒒 =  𝐹𝑖 𝒒
𝑁
𝑖=1

2
 

– Takes a long time to model and calculate. 

 

 Analytical ways will follow 
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How to split the form factor and the structure 

factor 

 𝐼 𝒒 =  𝐹𝑖 𝒒
𝑁
𝑖=1

2
= 𝑃 𝒒 𝑆(𝒒) 

 

 Decoupling approximation (DA) 

 

 Local Monodisperse Approximation (LMA) 
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The form factor 
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𝐹(𝒒) = 𝜌 𝑒−𝑗𝒒∙𝒓𝑑𝒓
𝑉

 

𝑃 𝑞 = 𝐹 𝑞 2

=  
𝑁𝑙
𝑁𝑝
𝐹𝑙 𝑞

2
𝑁𝑝

𝑙=1
             

=  𝑛 𝑟 𝐹𝑙 𝑞
2 𝑑𝑟 



The form factor models from Babonneau’s software 
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Rods laid down on a substrate 
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B. Lee et al. Langmuir, 2007, 23 (22), pp 11157–11163 



The size distribution model 

 Gaussian 

 Double Gaussian for the bimodal distribution. 

 Log-normal 

 Double Log-normal for the bimodal distribution. 

 Weibull 

 Schultz-Zimm function 
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The structure factors from Babonneau’s software 

 Random organization: S(q) = 1 

 Percus-Yevick 3D : Hard sphere potential 

 Percus-Yevick 2D  

 

 Paracrystal 1D 

 Paracrystal 2D rectangular 

 Paracrystal 2D hexagonal 

 

 And many others.. See IsGISAXS manuals. 
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Reciprocal space or scattering vector q 

 The scattering vector q is not a scalar but a vector. (qx, qy, qz) 

 

 When a lattice (or a sample) rotate, the reciprocal lattice (or 
the scattering from the sample) rotates. 

 

 The Bragg condition is not only q = 2*pi/d .  
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Ewald sphere 
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Definitions of angles and the q space 
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Note 

 Effects due to the grazing incidence geometry 

– Absorption 

– Reflection 

– Refraction 

 

 These effects are highly depending on the sample. 

– Supported island. 

– Buried particles. 

– Sandwiched particles. 

– … 
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In GISAXS, you can measure only the upper half 

- Substrate absorbs the downward scattering 
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At the incident angle, 0 

At the incident angle > 0 



The effect of a small incident angle  

1. Reflection causes an additional incident beam 
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𝛼𝑖 < 𝛼𝑐 
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𝛼𝑖~𝛼𝑐 
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𝛼𝑖 > 𝛼𝑐 
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Effect of wave amplitudes 
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GISAXS from a sphere / log scale image 
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Example 
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Measured at different incident angles: (a) 0.1°, (b) 0.22°, (c) 0.42°, (d) 0.68°.  

A facetted Pt/W(211) sample annealed at 1340 K 

Measured at different azimuth angles 

C. Revenant et al., Surface Science, 601, 16, 3431 
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0.8 nm Co/1.1 ML Pt/W after an annealing during (a) 3 min at 920–1000 K, (b) 3 min at 1020–1100 K, 

(c) 3 min at 1140–1210 K. Respective simulated 2D GISAXS patterns from (d) to (f). 

C. Revenant et al., Surface Science, 601, 16, 3431 

{211} 

{110} 



Under ~1 atm. pressure of 1.0% propylene and 0.5% oxygen in He 

On 6 cycle Al2O3  over SiO2/Si   

Shape changes with Ag nanoparticles in propylene epoxidation 
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oblate particles change of the wetting angle at 
nanoparticle/support interface 
with time at room temperature 
(indicated by arrows) 

62.001 RT 
75.005: 

RT 
75.001: RT 

flattening (decrease in height) 

wetting angle at the nanoparticle/ 
support interface resolved 

L. M. Molina et al., Catalysis Today, 2010, 160, 116. 
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Under ~1 atm. pressure of 1.0% propylene and 0.5% oxygen in He 

On 6 cycle Al2O3  over SiO2/Si with an initial cluster size ~6nm  

 

Shape changes with Ag nanoparticles in propylene epoxidation 

change of the wetting angle 

75.14: 50 C 75.005: 23 C 75.18: 75 C 

75.44: 150 C 75.61: 200 C 76.001: 23 C 

particle shape transformation to spherical form   
   

particles remain spherical after 
4 hrs reaction and cooling back 
to 23 C 

onset of change of aspect ratio 



The effect of small incidence angle 

2. Critical angle 
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Si wafer 

PS film 

Electron density  

 

    0.32 e/Å 3 

 

    0.70 e/Å 3 

 

Critical angle at 8keV 

 

    0.150 degree 

 

    0.223 degree 

 



Critical angles 
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𝛼𝑐,𝑠 
𝛼𝑖 
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𝛼𝑐,𝑓 
𝛼𝑖 

𝛼𝑐,𝑠 
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Vary the incident angle!! 

53 

Si wafer 

0.12 0.18 0.24 0.4 

0.12 0.16 0.22 0.3 

PS film 

TMV 

PS-PI film 

HPL structure 

If the incident angle is smaller than the critical angle of film, x-ray can only scan top surface of film 

If the exit angle is smaller than the critical angle of film, scattered x-ray practically cannot be detected. 

As long as the incident angle is smaller than the critical angle of substrate, particle scattering will be detected. 

If overshooting is not an issue , the smaller incident angle is the better because smaller q is accessible. 

X-ray energy: 7.38keV 

Critical angles of PS and PS-PI block copolymer film and Si wafer ~ 0.16o and 0.25o, respectively. 

B. Lee et al. J. Appl. Cryst. 2008, 41, 134-142. 

B. Lee et al. J. Appl. Cryst. 2007, 40, 496-504. 



The effect of a small incident angle  

3. Refraction 
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i f

i
~

f~
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How much x-ray will be refracted in a polymer film 
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B. Lee et al. Macromolecules, 2005, 38 (10), pp 4311–4323 



Penetration depth 
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I.K. Robinson, D. J. Tweet Rep.Prog.Phys. 55(1992), 599 

R. Feidenhans’l Surf. Sci. Rep. 10(1989) 105. 



Quiz 
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GISAXS vs SAXS : 40nm AuNp 
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Diffraction from lattice 



2D powder 

BCC – 100 vs 110 orientation 

61 

A. Senesi, B. Lee et al.  Angew. Chem. Int. Ed., 2013, 52(26), 6624–6628 
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BCC 110 orientation 

 

63 Along z axis Along y axis 

z 

x 

y 



Ewald sphere 
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Two-beam effect 

Refraction correction 

Crystal orientation matrix 

Penetration depth 



BCC : 100 vs 110 
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BCC : 100 vs 110 
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BCC : 100 vs 110 

67 

A. Senesi, B. Lee et al.  Angew. Chem. Int. Ed., 2013, 52(26), 6624–6628 



Diffractions from block copolymer films 
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Hexagonally perforated layer Gyroid : Cubic(Ia3d) Hexagonal Cylinder 

Lee et al. Macromolecules, 2005, 38, 4311 

H.-W. Park et al. Macromolecules, 2007, 40 (7), pp 2603–2605 
H.-W.Park et al. J. Am. Chem. Soc., 2009, 131 (1), pp 46–47 



Facet analysis 
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112 orientation 

111 : 19.5, 61.9, and 90o 

110 : dotted arrows 

L. M. Molina et al., Catalysis Today, 2010, 160, 116. 



2D powder with 112 orientation 
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Octahedron 
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Truncated Octahedron 
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Octahedron scattering in the reciprocal space 
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Quantitative calculation 
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Definition of q : Four q’s in GISAXS due to the reflection 
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ki,z 

kf,z 

-kf,z 

-kf,z 

ki,z 

-ki,z 

-ki,z 

kf,z 

qz =kf,z - ki,z 

qz =kf,z - ki,z 

qz = -kf,z - ki,z 

qz = -kf,z + ki,z 
qz = kf,z + ki,z 

SAXS 

GISAXS 

qx=kf,x - ki,x 

qx=kf,x - ki,x 
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A B 
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Full DWBA formulae 
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qx 

qy 

qz 

𝛼𝑓 

2𝜃𝑓 
𝛼𝑖 

𝜙 

𝑘𝑖 𝑘𝑓 



Fresnel’s law (wave amplitude) and 

Snell’s law (wave vector) 
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m = 1 
2 
3 

z 

z = z1 

      z2 

Lee et al. Macromolecules, 2005, 38, 4311 



Fresnel’s law (wave amplitude) and 

Snell’s law (wave vector) 
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Intensity and scattering vectors 
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is the Fourier transform of V(r) 



Effect of wave amplitudes 
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Lee et al. Macromolecules, 2005, 38, 4311 
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Softwares 

http://ln-www.insp.upmc.fr/axe2/Oxydes/IsGISAXS/isgisaxs.htm 

http://www.chemie.uni-hamburg.de/pc/sfoerster/software.html 

http://sites.google.com/site/byeongdu/software 

http://www.chemie.uni-hamburg.de/pc/sfoerster/software.html
http://www.chemie.uni-hamburg.de/pc/sfoerster/software.html
http://www.chemie.uni-hamburg.de/pc/sfoerster/software.html

